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Abstract
ChatGPT and other large language models (LLM) interfaces
offer powerful and flexible capabilities in tasks including
question-answering and chat-based support. These models
can already access global context, through web searches and
public data, or personal context, through augmentation with
private data and local storage. However, securely addressing
community-level challenges and collective action problems
necessitates unique privacy, security, and custodianship solu-
tions that safely bring together data from multiple parties and
stakeholders. This paper presents a method that enables com-
munities to securely aggregate data for LLM-based question-
answering, aimed at extracting valuable local insights and
customizing model responses to meet community-specific re-
quirements while being inherently auditable. To this end, we
leverage a combination of traditional privacy transformations,
LLM-enabled privacy transformations, trusted execution en-
vironments, custodial control of data, and consent-based pri-
vacy choices, to maximize community data security while
maintaining the flexibility required for community question-
answering. This innovative method facilitates collaborative
problem-solving using shared community data.

1 Introduction

The rapid proliferation of large language models such as GPT-
3.5, GPT-4 [42], and LLaMA [55] as well as their consumer-
facing interfaces like ChatGPT have captured our collective
imagination. The flexibility and versatility of these technolo-
gies make them well-suited to perform a variety of tasks in-
volving human interaction. Although these models are trained
on a massive range of data sources across the web, this data
is not up to date. The advent of knowledge retrieval aug-
mentation (such as WebGPT [39] or RAG [33]), promises
to allow these models to become question-answer tools for

specific information available on the public internet. These
models could also become powerful consumer tools if they
are augmented with personal data (health, financial, and fam-
ily information), such as demonstrated by the Microsoft 365
Copilot. However, public data is limited and many key in-
sights can only be garnered by aggregating and searching
through private community data.

The power of community data sharing is increasingly being
recognized as a vital component in tackling complex soci-
etal challenges and enhancing overall well-being. This has
led to the emergence of innovative data governance models,
such as data cooperatives [21], which promote the idea that
individuals can collectively control and benefit from their
data. The critical role of data in the new economy under-
scores the importance of users taking collective control of
their data to reap the rewards of this valuable resource [46].
A human-centered approach to data architecture, as described
in "Trusted Data" [22], seeks to address data privacy, security,
ownership, and trust by enabling insights to be extracted with-
out revealing the underlying data. This approach, combined
with breaking down the data silos of big tech monopolies,
has the potential to democratize data sharing for community
well-being [57].

There has been a great deal of research in the social sci-
ences about what a human community is [5, 48], but we draw
on a broad definition where a community is a group of people
with shared relationships and the possibility or will to create
shared institutional structures (which are needed to deploy our
proposed system). These communities could comprise phys-
ically co-located individuals, physically distributed groups
with a common enterprise (such as businesses), or groups of
individuals with shared challenges (such as minority groups
facing shared challenges or groups with rare diseases). In each
of these contexts, there is value to the unique insights that can
be harnessed through the aggregation and analysis of local
data using LLM-based question-answering while preserving
privacy.

For instance, physical communities could use this method
to share data on traffic, experiences with local businesses, or
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crime rates to help with collective coordination and planning.
This information could be used to design better urban envi-
ronments, allocate city resources more efficiently, or develop
more effective community programs. Businesses could bene-
fit from this approach to securely aggregate data across busi-
ness units or partner companies to help design strategic goals,
draw from past client experiences or co-work on compatible
application programming interfaces. Minority communities
could share experiences and personal insights to allow for
better chat-based mental health support systems or to extract
insights that allow for better program development to address
the real needs of the community. The proposed method is
flexible enough to meet the specific data-sharing needs of var-
ious communities while maintaining data security and privacy.
In general, the goal is not only to enable community data to
be aggregated for analysis but also to align the results of the
LLM with the interests and experiences of the community.

As the field of engineering LLMs to address user needs
progresses rapidly, we pinpoint three primary state-of-the-art
strategies to build models that cater to the needs of communi-
ties: (1) Prompt engineering system messages that are tailored
to the community; (2) Fine-tuning using reinforcement learn-
ing from human feedback (RLHF [43]) using members of a
community to answer questions in a way that better suits the
needs of the community; (3) Augmenting responses with data
to provide relevant experiential and contextual answers by
drawing information from real community data and personal
stories. Each of these approaches draws on community input
and deliberation to optimally address the needs of the commu-
nity. We omit a broader discussion of fine-tuning for specific
tasks, as we wish for these models to stay as general purposes
and flexible as possible. While the use of RLHF using com-
munity feedback is powerful, we leave this as future work as
it would require additional costly separate infrastructure and
significant hands-on work by members of a community to
provide human feedback for training. Further, while design-
ing a robust and equitable system prompt that suits the needs
of a community is essential, we take this as a given for the
rest of the body of this work, reserving examination of delib-
erative system prompt selection for the discussion. Instead,
we will focus on approach (3), which allows the secure use of
community data without significant additional investment to
augment model responses.

To do this, this work presents the following novel contribu-
tions to the literature:

• A system architecture for securely sharing community
data to an LLM for question answering.

• A brief survey of privacy-enabled tools for community
question answering.

• An analysis of the privacy-preserving use cases on natu-
ral language text by large language models.

• A proposal for experiments in communities to test the
effectiveness of the proposed system.

• An in-development prototype implementation of the sys-
tem.

2 System architecture

The system is designed based on the core principles that
data and compute should be hosted and controlled locally
where possible, that all data should be self-sovereign and
provided with consent, and that privacy (both from the outside
world and within the community) should be controllable and
guaranteed to the strongest possible level.

To allow individuals in the community to contribute data
and then query aggregated data resources at a later date, shared
resources in the community should be used to establish a
server to deploy a trusted execution environment (TEE) and
an encrypted database, which will be used to protect commu-
nity data. These execution environments will externalize a
public encryption key used to encrypt the flow of user data
and at any point, the community may choose to dissolve the
infrastructure deleting all shared data. The community may
decide to allow a ‘backdoor’ through which the TEE can
delete or extract raw data. To ensure that this mechanism is
used responsibly, and to avoid potential security breaches, the
community may designate a committee or a board to vote on
approving any use of the ‘backdoor’. This can be handled by
a threshold signing protocol [29], which requires a majority
of voters to approve such action.

To summarize, the system leverages six key privacy and
security elements:

1. A TEE is used to execute the custodial operations of the
data and queries.

2. Data remains encrypted once it has left the hands of
an individual using the public encryption key provided
by the TEE. Only the TEE, which cannot be directly
accessed by any user of the server (not even with root
access), ever sees the corresponding decryption key.

3. Private data has a de-identification step applied to it
(using LLMs or traditional methods).

4. Non-private and de-identified data are made available
to the LLM through secure information-retrieval in a
key-controlled database.

5. User queries and prompts (with data) are encrypted and
sent to the TEE.

6. (Optional) All data is kept local through the execution
of the LLM on the TEE (computational limits allowing,
see subsection 2.3).
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In this system, three sets of data are processed. The first is
a user query to the system, X , which will contain a prompt
Xprompt and optionally data, Xdata. This user data may take
a variety of forms and it may either interact with existing
data or be placed directly into a text-based query. This user
query may require data from the community to answer. The
community data is broken into two types, private commu-
nity data with sensitive information, Cprivate, and Copen which
only contains data that anyone in the community can access.
It is important to note here that Copen should still not be pro-
vided to the public internet, only that it is available to the
full community without restraint. For example, Copen may be
proprietary enterprise data or shared community records. We
denote the community data as a pool, where the pooled data
is made up of i individual records, Cprivate

i , each of which may
require specific operations to ensure privacy. The items in
the pooled data will be uploaded asynchronously over time,
resulting in a constantly updating pool of community data, C.

The TEE is a secure area in a processor that guarantees the
confidentiality and integrity of the code and data executed
within it. When combined with access control mechanisms,
a TEE can provide a highly secure solution for protecting
data uploaded and stored in a database. When a TEE is initial-
ized, it generates a public-private key pair. When community
members upload their data, they can securely encrypt it us-
ing the public key of the TEE, pk, before uploading it to the
database via the TEE, and only the TEE, which holds the
private key, can decrypt the data. If only the TEE has access
to a set of tables within the database, then individual records
need not be encrypted (as the whole database is) allowing
for an efficient search of records to augment responses. More
importantly, loading complete tables into the enclave prevents
deanonymization attacks associated with observing memory
access patterns. For example, encrypted data in which each
item is encrypted separately would still leak how often a
specific item is accessed, which under certain circumstances
could have devastating results. Larger tables that do not fit
in the enclave’s memory can leverage an Oblivious RAM
(ORAM) scheme [25], but we leave this for future work.

Similarly to the community data upload process, a user
can encrypt their prompt, X prompt , and associated data, Xdata,
for upload to the TEE. While steps are taken throughout
the process to prevent the leaking of community data, this
becomes increasingly hard to ensure if outsiders are able to
query the TEE API. Many solutions exist for this challenge,
from simple user account management to special identity
control or cryptographic wallet signing. These approaches
can help to prevent attacks via information leakage through
repeated queries (which has been shown to be a threat in
many privacy contexts [41]) and distributed denial-of-service
(DDoS) attacks on limited local commute resources.

Community Hosting
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Figure 1: A diagram of how private queries can be com-
bined with personal data to allow for large language model
examination of shared community data that has been privacy-
preserved. (1) Community data is encrypted at upload time
into a secure database using the trusted execution environ-
ment’s (TEE) public key (pk). (2) The securely uploaded
private data is transformed into a privacy-persevered inter-
mediate representation that can be inspected and audited. (3)
Private user queries can be sent to the TEE where the prompt
engine can combine queries with community data using infor-
mation retrieval (4) to send to a pre-trained language model
hosted externally via API or within local hosting for security
enhancements (computational resources permitting).

2.1 LLM querying

While a large literature exists around fine-tuning models for
specific tasks, recent work has focused on the role of augment-
ing LLMs using retrieval from external knowledge sources.
Owing to their remarkable capabilities and pre-training on
large corpora, LLMs are extremely powerful zero-shot and
few-shot learners [4, 8, 42, 53]. However, their offline training
approach results in a lack of up-to-date information. Work on
retrieval-augmented language models allowed LLMs to draw
on external knowledge [20,24,33,60]. These augmented mod-
els can draw on up-to-date information from the web through
search engines [6, 32, 39], code repositories [44, 59, 61], or
private documents [2, 23, 26].

These retrieval models come in a variety of forms from
document-search-based approaches [2, 27, 54] to more so-
phisticated approaches such as iterative prompts revising [45].
While many of these approaches use sophisticated approaches
to augment the LLM, recent work has found success in simply
prepending the retrieval results to the LLM query [49, 51].
These latter approaches are extremely simple to operate and
use traditional, efficient, and reproducible information re-
trieval systems such as Pyserini [35]. The simplicity of these
approaches and their ability to efficiently run on a TEE makes
them particularly well suited for our proposal.
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Building on the work in RALM [49], where a user creates
a query, the TEE information reveal system performs a search
that retrieves one or more documents or document summaries
from the community corpus C, and conditions the above LLM
predictions on these documents by concatenating the retrieved
documents within the LLMs input prior to the query prompt.

2.2 Information privacy controls

While much of the secure infrastructure proposed here is
focused on keeping data safely within the community, care
must be taken in how data is shared between community
members. Where community members declare data open to
the community, Copen, no additional work needs to be done,
and the data can be indexed and searched directly by the
information reveal system. For sensitive data that is uploaded,
Cprivate, a privacy-preserving operation must be performed on
the data to produce new data artifacts Csa f e. In this discussion,
we categorize data at the community level into two types:
quantitative data and natural language data.

2.2.1 Privacy preservation in natural language

Over the last several years, a variety of approaches have
been proposed to leverage deep learning to create privacy-
preserving text representations and altered textual data to pro-
tect against identification or private attribute inferences [10,
15–17, 34, 38] with applications in protecting data from
emails [14] to medical notes [1, 13].

Prior works use a variety of approaches from differential
privacy in training to an adversarial approach to privacy [11].
We anticipate that with the increased capabilities of new mod-
els such as GPT-4 [42] even more effective approaches will
emerge to provide privacy while still outputting intermediate
representations after the privacy-preserving step. In Figure 2
we demonstrate an example of using powerful LLM models
to perform the privacy-preserving step.

Given to the recent release of GPT-4’s release, these ap-
proaches are still largely untested. During testing, we found
the GPT-3.5 endpoint with the same system message was
systematically unable to fully privacy preserve the text (e.g.,
leaving in the friend’s name in the prompt of Figure 2). Pro-
tecting privacy, in this case, is particularly challenging if an
actor has contextual knowledge about the community and
its members. In such cases even deidentified data could be
de-anonymized [40, 47]. Future work is needed to understand
under what conditions this model can protect privacy.

While the privacy-preserving quality of this proposed ap-
proach is not yet fully studied, the approach has two impor-
tant advantages. First, it uses the existing technology stack to
prompt the LLM locally or via the API, reducing the software
overhead. Second, it creates an intermediate text represen-
tation that should be de-identified. In cases where the com-
munity members believe data is sensitive enough to warrant

checking, the TEE can be built to return the individual records
to the user after de-identification. This would allow the user to
confirm that their information has been scrubbed and choose
to delete it if not thus providing auditable privacy.

2.2.2 Privacy transformations on quantitative data

While many valuable insights are only available through the
analysis of natural language text, there is also a wide array of
community questions that can be addressed purely through,
or in combination with, quantitative data. Various related
projects have used community data to help members make
better decisions [9, 58] including specific interfaces for con-
texts such as migration choices [36] or urban health inequali-
ties [12].

In many cases, these data-based support systems use pub-
licly available data provided by governments or institutions.
Governments around the world release a variety of statistics
and raw data that is useful in decision-making. This data can
include zoning data for urban planning, housing statistics
for understanding the local real estate market, healthcare out-
comes for various communities and demographics to optimize
public health services, and educational performance data to
guide policies and resource allocation in the education sector.

In cases where governments cannot release raw records
due to privacy concerns, many have attempted to do so with
privacy-enabling technologies, such as differential privacy in
US census results [19] and the Canadian Open Data initiative,
which employs data anonymization techniques to protect indi-
vidual identities while providing valuable datasets for public
use.

Quantitative data does not need to just come from govern-
ments. Individuals can extract valuable insights from privately
sharing personal quantitative data [52]. For example, citizen
science tasks often involve individuals sharing data on local
environmental conditions, such as air quality, water quality,
or biodiversity, to support scientific research and conserva-
tion efforts [18]. Another example is personal health track-
ing, where individuals contribute anonymized health data,
like steps walked, sleep patterns, or heart rate, to better un-
derstand population-level trends and improve public health
interventions. These shared contributions help build a richer
understanding of the community and its needs while respect-
ing individual privacy. Furthering this approach, the Euro-
pean Union’s General Data Protection Regulation (GDPR)
encourages the use of privacy-preserving techniques like k-
anonymization [50] and pseudonymization when sharing per-
sonal data.

2.3 Local LLM Inference

Despite the previously mentioned design elements ensuring
secure data uploading, limited access, and privacy preserva-
tion, there remains a critical security aspect to address. At
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Figure 2: An example of using GPT-4 with a focused system prompt to convert the identifiable text into a deidentified text that
still contains the essential information. All identifying names have been removed (including the name of the clinic which may
have been useful information) but threats involving an actor with knowledge of the relevant context remain.

present, the largest and most powerful language models, such
as GPT-4, are accessible only through an API. This means
that uploading sensitive data necessitates sending commu-
nity data to an external service, posing challenges in terms
of privacy, security, and data compliance, particularly when
sensitive records must be stored locally (as required by GDPR
and CCPA).

One potential solution is to host these LLM tools locally.
Considerable efforts are being made to enable smaller ver-
sions of these models (such as LLaMA-7B or Alpaca) to run
efficiently on local devices. Projects like llama.cpp1 aim to
port open models to operate on local consumer-level Unix-
based hardware. Additionally, approaches may draw from the
principles of TinyML to enable models to run on edge comput-
ing [3]. If inference efficiency improvements are substantial
enough, these models could potentially operate entirely within
the TEE, significantly enhancing security. However, as things
currently stand, high-speed and low-memory methods for run-
ning LLMs do not achieve the same level of flexibility and
robust performance as their large server-hosted counterparts.

Even in situations where full chat-based LLM answering
cannot be performed locally, we may prioritize the privacy
aspect of inference. This is crucial since enabling local privacy
controls for all data ensures that no private data ever leaves
community servers. To this end, smaller LLMs running locally
might be sufficient for providing privacy controls. If these are
unavailable, the vast array of traditional literature on NLP-
based privacy controls, as outlined in subsubsection 2.2.1, is
appropriate for running either directly in the TEE or through
locally hosted compute services, such as external GPUs or
community compute services.

While much of the system is designed for low-cost local de-
ployment to maximize usability for small communities, larger
communities (such as major corporations) might prioritize
privacy and security over cost. In these instances, the threat
model of the LLM may involve sending any data to an ex-
ternal company server, making the use of within-company

1https://github.com/ggerganov/llama.cpp

cloud computing a sensible and secure alternative. In such
cases, open-source LLMs are highly suitable for running on
company servers and can even be further fine-tuned to align
with company values, as demonstrated in RLHF [43].

3 Experiments with secure community trans-
formers

In order to assess the real-world effectiveness of these tools
for communities, we are initiating the design of field exper-
iments that utilize the tool to evaluate its utility and safety.
The ultimate objective is to implement the model end-to-end
within a specific community, creating tools that address key
concerns. For demonstration and evaluation, we concentrate
on a specific application relevant to numerous communities:
mental health support. The primary task involves using the
LLM to function as a mental health support chatbot [31],
drawing from existing community experiences to customize
responses to a community’s unique concerns. For instance,
an LGBTQ support organization could gather community
experiences to develop a support bot tailored to address the
challenges faced by other community members.

To accomplish this goal, the task can be divided into a
series of smaller evaluation tasks. The key hypotheses to
test are: (H1) LLMs can successfully deidentify personal
experiences, and (H2) Enhancing mental health chatbots with
personal stories can improve their utility for communities that
are underrepresented in the LLM training data.

Before conducting a full user study to evaluate these ap-
proaches, we will rely on two different datasets to test the con-
cepts. The first dataset is from the National Alliance on Men-
tal Illness, which contains Personal Stories that often include
identifying information (given with consent) or pseudony-
mous information. This data is processed through the privacy-
preserving LLM to identify areas where the models struggle
to remove sensitive information. The second dataset is a pub-
lic comment thread from the r/AskReddit subreddit, where
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users were asked, “As a mental health worker or someone
affected by mental health issues, what is one thing you would
want to say to educate people about mental health and to
lessen the stigma and shame surrounding it?” This thread has
11.2 thousand comments, and we focus on the root comments
containing users’ personal stories. For quality control, we se-
lect the top 1000 comments with user stories and input them
into our information retrieval system for use in the LLM chat
interfaces. This proof of concept enables us to examine how
often community answers are referenced (through informa-
tion retrieval success rates) and assess the usefulness of the
responses in generating robust results (through A/B testing
with and without retrieval augmentation).

The final experiment aims to determine how effectively
these LLM interfaces with information retrieval can utilize
non-textual data. A key example, within the context of the
aforementioned application, is incorporating local mental
health statistics.

4 Discussion

While the proposed system design offers protection against
several threat models, it is unable to guard against others. The
following discussion will elaborate on the system’s strengths
and weaknesses in terms of security and compliance, as well
as explore the potential socio-technical challenges and the
influence of system prompts on long-term behaviors.

One of the primary concerns with the system design is
the possibility of bad data insertion, whereby malicious or
incorrect data may be introduced into the system. This is-
sue is particularly concerning when community members
intentionally or inadvertently introduce false or destructive
content into the model. Such content can significantly reduce
the system’s performance, compromise its accuracy, and po-
tentially harm other members of the community. As a result,
the effectiveness and reliability of the system can be severely
undermined. To mitigate this risk, it is essential to implement
robust data validation and moderation mechanisms to detect
and filter out malicious or erroneous inputs. This may involve
incorporating automated content analysis, user reputation sys-
tems, and manual moderation processes to ensure that the data
fed into the system is accurate, reliable, and beneficial to the
community as a whole. Additionally, fostering a culture of
trust, responsibility, and accountability within the community
can help minimize the likelihood of bad data insertion and
encourage members to contribute positively to the system’s
success.

In terms of compliance, the system design adheres to the
GDPR, CCPA, and the proposed EU AI Act [30]. However,
the evolving nature of these regulatory frameworks leaves
a significant number of legal questions unanswered. It does,
however, maintain the right to be forgotten, as community
members give consent for data to be used, and can revoke
that consent by removing the data (and any of it’s privacy

preserving transformations) from the community data pool.
Socio-technical challenges may arise from this system de-

sign, particularly in terms of reinforcing community group-
think and polarization [28]. By exclusively using data from
a specific community, the system may inadvertently amplify
existing biases, leading to further polarization within and be-
tween communities. The risk of driving echo chambers further
apart and intensifying divisions between communities should
not be overlooked. To address these challenges, it is crucial
to develop strategies that encourage diverse perspectives, pro-
mote constructive dialogue, and counteract the potential for
negative consequences resulting from the system’s design.
Indeed, the EU AI Act is deeply concerned about the role
of subliminal persuasion from models, and it is still unclear
where liability or risks emerge when acting on the outputs
from these models.

An essential aspect to consider regarding the long-term im-
pact of these systems on communities is the choice of system
prompts. The prompts can wield a considerable influence on
the model’s behavior, dictating what it will and will not do.
Ensuring that system prompts encourage positive behavior
and productive interactions is crucial for the successful im-
plementation and adoption of these tools within communities.
This may involve designing prompts that foster empathy, un-
derstanding, and open-mindedness, as well as incorporating
feedback from diverse stakeholders to ensure a broad range of
perspectives is represented. Moreover, it is important to regu-
larly evaluate and adjust the prompts to optimize the system’s
performance and adapt to the evolving needs and dynamics
of the communities it serves.

Finally, it’s important to turn our attention to the use of
TEEs as a security control mechanism within the system
design. TEEs provide additional layers of security by safe-
guarding the executed code, runtime state, and memory dur-
ing operation. In situations where lower security controls are
deemed sufficient, TEEs can be entirely removed and replaced
with an unsecured runtime on a cloud provider or local server,
offering advantages in speed, auditability, and flexibility. Con-
versely, if a community is concerned about centralized control
of data management and computation, they could opt for a sys-
tem that distributes the data across a network of TEEs (e.g.,
as in the case with Secret Network2, a privacy-preserving
Blockchain). Similarly, as TEEs are known to be susceptible
to potential side-channel attacks [7, 56], a community could
leverage secure multiparty computation (MPC) to manage
the system [37, 62]. MPC distributes the control and process-
ing of data across multiple parties, ensuring no single entity
has complete control over the information. However, this ap-
proach comes with trade-offs, as it may significantly reduce
system speed and usability. It also requires assuming that the
different parties do not collude — an assumption that may
be difficult to make in practice. Ultimately, the choice of se-

2http://docs.scrt.network/
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curity mechanisms should be tailored to the specific needs
and concerns of each community, balancing the desired level
of privacy and protection with the trade-offs in performance
and ease of use. By carefully considering these factors, com-
munities can implement a system that offers robust security
while maintaining functionality and accessibility for all its
members.

5 Conclusion

In conclusion, this paper has presented a novel method for
securely aggregating data from multiple parties and stakehold-
ers within a community, enabling the utilization of large lan-
guage models (LLMs) like ChatGPT for question-answering
tasks that address community-level challenges and collective
action problems. By incorporating a range of privacy and
security measures, such as traditional privacy transformations,
LLM-enabled privacy transformations, trusted execution envi-
ronments, custodial control of data, and consent-based privacy
choices, the proposed system maximizes community data se-
curity while offering a flexible tool for community-specific
insights and tailored model responses.

The implications of this research extend beyond the imme-
diate application of LLMs in question-answering tasks, as it
demonstrates the potential for harnessing the power of these
models in a secure and privacy-preserving manner to address
a wide array of community-oriented problems. Furthermore,
the methods presented in this paper can serve as a foundation
for future research, exploring novel ways to enhance data
security, privacy, and usability in LLM applications while fos-
tering collaborative problem-solving using shared community
data.

As LLMs continue to advance and gain prominence, it is
essential to develop robust, secure, and privacy-preserving
mechanisms that cater to the unique needs of various com-
munities. By bridging the gap between individual and global
contexts, this research contributes to the ongoing efforts to
make LLMs an invaluable tool for addressing the complex,
diverse, and dynamic challenges faced by communities world-
wide.
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